M-VIA Embedded®部品内蔵基板

Embedded Devices PWB

高電圧アプリケーション

- ●表面実装部品の内蔵化による小型化
- ●発熱部品を放熱側へ内蔵し放熱効率をUP
- ●配線距離の短縮によるON抵抗低減により スイッチング性能のUP

EV・HEV向けパワーモジュール

銅リードフレーム+パワー素子の組み合わせによる 高出力・高効率のパワーモジュールの実現

DCDCコンバーター

ノイズ低減・電源品質の向上

小型・高出力に対応したSiC、GaN内蔵DCDCコンバータ

車載HPC、データセンター向けGPU、CPU デカップリングコンデンサの配置の最適化により

AR/VRデバイス/ウェアラブル/RFモジュール 高速処理、小型化、低消費電力化

低電圧アプリケーション

伝送特性の向上を狙える

基板面積の削減、高集積化

配線経路の最適化によりインダクタ低減し、

●発熱部品を放熱側へ内蔵し放熱効率をUP

パッケージ/モジュール

高速処理、小型化、低消費電力化、放熱能力の強化

GPU, CPU向けコンデンサ内蔵基板コンセプト

構造	内蔵部品	特徴
一般基板 IC Package Inco	内蔵部品無し	平面方向への配線距離が長くインダクタンス増加、 ノイズ発生の要因となる。
シートコンデンサ内蔵モジュール IC Package PCB	大容量シートコンデンサ (写真:内蔵モジュール化済み)	シートコンデンサをモジュール化しIC直下へ配置 することで配線距離を短縮しインダクタンス、ノイ ズの低減、及び電力削減効果を狙う。
シートコンデンサ内蔵マザーボード IC Pudage PCS		マザーボード内部へシートコンデンサを配置する ことでさらに配線距離を短縮しインダクタンス低減 と、表面のコンデンサの配置エリアを削減すること で、基板の小型化、及びICの大型化が可能になる。
シートコンデンサ内蔵パッケージ、IC #EA/PRP-klope PCB		パッケージ基板内部へシートコンデンサを配置す ることでさらなる低インダクタンス化を狙う。