多層メタルベース基板

Multi-Layer Metal base PCB

	複層メタルベース基板	放熱樹脂ビルドアップ基板
構造例	放熱絶縁樹脂メタルベース	ビルドアップ層絶縁樹脂 メタルベース上絶縁樹脂 メタルベース
放熱樹脂	H5T、M2P	ビルドアップ層絶縁層樹脂:H5T、M2P メタルベース上絶縁樹脂:全樹脂対応可
メタルベース	銅 or アルミ	銅
特長	一般的なプロセスで作製した積層基板を放熱 樹脂を用いてメタルベースに貼付けて放熱	メタルベース基板上に放熱絶縁樹脂、導体 層を積層し、非貫通ビアで層間接続

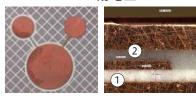
GaNMO-MS基板 ※GaN Multi-layer Organic Metal Substrate

ワイドバンドギャップ半導体 (GaN、SiC等) に有効な構造

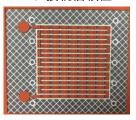
- ●ソース/ドレインを層間で配線することにより、低インダクタンス化が可能
- ●キャビティ構造により、低熱抵抗化および低背化が可能

構造図

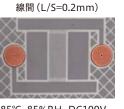
実施例


層間接続ビア

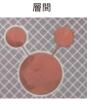
ドリルビア



耐電圧


①ベース銅-内層導体間	AC5kV以上
②内層導体-外層導体間	AC5kv以上

ビア接続信頼性



-50°C⇔150°C 各30分 2000サイクル 抵抗値変化無し (0.4mΩ/ビア)

イオンマイグレーション

85℃、85%RH、DC100V 1000時間 絶縁抵抗値:1.0E+10Ω以上

